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Summary 
A calculation of the modification of the optical absorptions of an isotropic 

sample by a uniform external electric field is presented. The induced orientational 
anisotropy, the Stark shift and the field dependence of the transition moment are 
taken into account up to the second order in the field. The final expressions differ 
in the contributions from the transition polarizabilities from previous results. 

Introduction. - The optical absorptions of isotropic samples due to electronic 
transitions are modified by an externally applied electric field. Labhart [ I ]  examined 
the dependence of the oscillator strength of the transition on the field. Using second 
order Rayleigh-Schrodinger perturbation theory Liptay [ 2 ]  incorporated the 
influence of the field on the transition moment in a calculation of the field 
dependent absorption. 

Our derivation differs from the one just mentioned in three respects: 
1) The field dependence of the transition moment is introduced in a general 

way by defining transition polarizabilities. This has the advantage that physical 
quantities enter in a manner, which does not involve the numerical methods 
required to approximate their magnitude; 

2 )  Average values of molecular quantities are directly expanded in a Taylor 
series in the field F, instead of calculating the ratio of two separate series expansions 

3) The explicit description of molecular orientations in terms of Eulerian angles 
[3] is avoided by working algebraically with rotational invariants. 

Classical statistical mechanics is used to describe the orientational distribution 
of molecules in the field. As a consequence the result holds only if the temperature 
of the sample is high enough for kT to be much larger than the energy separation 
between molecular rotational levels. 

The derivation is further restricted to the case of an electronic transition in a 
frequency range, where there are no contributions from other transitions to the 
absorption. 

131; 
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The field dependence of the molar extinction coefhcient. - In the absence of the 
perturbing electric field F, the molar extinction coefficient c0 (v) observed in an 
experiment with polarized monochromatic light of frequency v is given by (1): 

where 

and e is a unit vector along the electric field of the lightwave, Po is the electronic 
transition moment, S 0 ( v )  is a shape function describing the contour of the 
absorption band, () stands for averaging in general, N, is Avogadro’s number and h 
is Planck‘s constant. 

Averaging the R.H.S. of (1) over an isotropic distribution of transition moments, 
we find 

The introduction of a uniform static electric field F affects the absorption of a 

1) The energies of initial- and final molecular state are changed; 
2) The shape function S (v) is altered; 
3) The transition moment P is modified; 
4) The distribution of molecular orientations becomes anisotropic. 

The first effect causes a Stark shift given by (4): 

non-rigid sample, consisting of non-interacting absorbing molecules, in four ways: 

1 
2 

h A v =  - A p .  F-  -F . A U  . F 

with 
(4) 

AP - P (f) - P 0)  A a  -a (0- a (i) 

and where p (k) is the dipole moment and a (k) the polarizability in the kth state and 
i and f labels the initial and final state respectively. 

The alteration in the shape function is considered to consist merely of a uniform 
shift Av of the band, without changing the contour [4] i.e. 

With the aid of (9, realizing Av given by (4), to be sufficiently small, S(F,c) 
may be approximated by the first three terms of its Taylor expansion in Av, i.e.: 
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The perturbation of the molecular hamiltonian by the field F causes a change in 
the wavefunctions of initial and final state and hence gives rise to a field induced 
part in the transition moment. Just like an ordinary dipole moment we describe 
P (F) by a power series in F: 

P(F)=PO+A. F+B:  F F +  ... (7) 

which defines the transition polarizability A and the transition hyperpolarizability 
B. The tensors A and B are of second and third rank respectively. 

Unlike the polarizability a, the transition polarizability needs not to be a 
symmetrical tensor. 

In the static field F the molecules acquire a potential energy -V(Q,F) 
depending on their orientation Q relative to the field F. 

1 
2 V(Q,F)=p( i ) .F+-F .  a ( i ) .  F (8) 

The normalized distribution function for molecular orientations f (Q,F) is given by 

f(Q,F)= 1 exp V V (Q,F)]/J exp [/I V (SZ,  F)] dQ 
0 0 

(9) 

where /I- l/kT and where 0 indicates that the integration is over all orientations. 
In view of the development which follows, we emphasize that at zero field (9) 
represents an isotropic distribution of orientations. 

The extinction coefficient E (v,F) in the presence of F can be calculated from the 
following expression. 

c (v,F)=Kv({e. P(F)}2S(F,v)) (10) 

where the distribution function from (9) has to be used in the averaging. 

depending on c0 ( v )  and its derivatives. 
Using (6) and (3) the R.H.S of (10) may be transformed into an expression 

The averaging indicated on the R.H.S. of (11) will be performed term by term. 
For a general term Q (F) we shall show the route for the calculation. We define: 

T (F)= s (Q,F) expp V (Q,F) dQ (12) 
0 
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Hence: Q (F) = T F ) / N  

Expanding Q(F) into a Taylor series in the field components Fi, retaining 
terms up to the second order in F, we obtain: 

The derivatives are given by: 

d N  dT 
dF, dF, dF, dFJ BF, aF, dF, dF, dF, dF, 

a2N N-2 dT dN -- a2Q N-1 N-2 __ __ - N-2 T ___ - d2T 
- 

(17) a N  dN 
+ 2 ~ - 3 ~ - - - -  __ 

aF, aF, 

(20) 
a N  av 

dF, aF1 

av av 

--=p 1’ -expl(VdQ 
0 

aF, dF, (21) 
0 0 

Inserting eqs (18) to (21) into (16) and (17) and introducing the symbol (0) for 
averaging over an isotropic distribution, we arrive at: 



1 1 
+ 28 ((Qij 6 (0)))  - YL? ( (4 (0))) ((aij)) 

After the expressions (7) for P(F) and (4) for A v  are inserted and distributed 
over all terms in (1 1) we retain terms up to the second order in F and write: 

3 E O  (4 
E (v,F)= 7 

PO k =  1 

(26) 



HELVETICA CHIMICA ACTA - Vol. 61, Fasc. 2 (1978) ~ Nr.  67 

where 4, = (e . Po)2 

42 = (e  . A . F)2 

4{ = (e . Po)2(Ap . F) 

45=2(e .P0) (e .  A .  F)(Ap. F) 

717 

4 3 = 2 ( e .  Po)(e. A .  F) &=, (e .  1 Po)2(F. A a . F )  (27) 
L 

44= 2 (e . Po) (e . B: FF) $”= (e . Po)2 (Ap . F)2 

Now relation (15) together with (24) and (25) enable us to calculate any such 
term as Qk- ( @ k ) .  The problem of averaging has been reduced to that of finding 
average values in an isotropic system. 

Average values in an isotropic system. - Let us agree to choose in a molecule a 
Cartesian coordinate system defined by three orthonormal vectors {i}. The 
components of a tensor T of rank n with respect to this basis are denoted by T,. . . . 

We select a space-fixed coordinate system defined by the three orthonormal 
vectors ((j. The two coordinate systems are related to each other by the orthogonal 
transformation R: 

{C}=R{i} or < = z R t i i  with RSi=C. i (28) 

The components of the tensor T in the two coordinate systems are coupled by the 
following transformation: 

jj . . .  

= (5 . i)(q . j). . .Tij 
i... 

If the system {i} can take all possible orientations in space, the average value 
of the component ((TtV,..)) is determined by the averages values of quantities 
of the form ((({ . i)(q . j ) . . . ) )  . We shall refer to these as a n-factor product 
depending on the number n of scalar products involved. In our problem we shall 
not exceed n =  4. The average value of an n factor product is completely determined 
by the rotational invariants it contains. At the end of this paper we shall present 
in an appendix a method to find these invariants. Here we give the rules which 
follow from the discussion in the appendix. 

1. ((C . 9) = 0 (30) 

2. The contribution from a 2-factor product is given by 

1 
( ( ( 5  i ) (q . j ) ) )=7dtvdi j  (31) 

3. A 3-factor product averages to zero unless the vectors g, q , c  and i,j,k appear only 
once. 

(32) 
1 

(((C.i)(v . j ) ( C . k ) ) ) = d  
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4. A 4-factor product yields a non-vanishing contribution in two cases. 
a) One of the vectors g appears in all the factors 

1 
( ( (5  ' i)(t ' j ) (<  ' k)(t ' 1 ) ) ) = ~ { 6 i j 6 k , + 6 i k 6 j , + 6 i 1 6 k j }  (33) 

b) The two vectors 5 and g each appear twice. 

A most convenient choice of the space-fixed coordinate system is to have 5 in the 
direction of the external field F. 

The result of the averaging of the quantities listed in (27) will depend on the 
direction of e, i.e. on the polarization of the lightwave. The job has to be done for 
two situations, namely e I F  i.e. e= 5 and e l F ,  say e =  q .  From these we shall 
synthesize the general result for an angle x between e and F. All quantities in (27) 
are quadratic in e and hence for any @ we have a relation: 

4 01) = q5 (0 ") cos2x + q5 (90 ") sin2X (35) 

For a particular @, say @", we shall present the steps leading to ((@(x))) as an 
example. From (27) it follows, using the alternative notation Po= Po: 

4" (0 ") = P! P: A p E F r  A p: F; 4 (90 ") = P," P," A ,u, F, A p, F, (36) 

L 
= F2 -{ 5 2  +y (3 C O S ~ X  - 1)} 

90 
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where - 
2" = Po2 (A ,u)2 (42) 

- 
N = 3 (p0 . A ~ ) ~  - pO2 ( A ~ U > ~  (43) 

Working along this line an expression is finally obtained for t X  ( v , F ) / t  (v). 

The quantities d', 9IX andg:, all depend linearly on cos2,y.These linear relations 
are written in the form: 

1 1 
3 30 

= -59 + -8 (3 cos2x - 1) (45) 

The coefficientsg, &,F,3, Y a n d N  are given in terms of molecular quantities 
by the following relations. 

P 0 . A . p  1 2 
59=2p + -EA;+ - C P ~ ~ B ~ ~ ~  

PO2 PO* ij Po2 ij 

3 1 
&=/32[3(p.p)2-p2]+-pp.u 2 .p - -pTru  2 (49) 

01 . Po) Tr A p . A . P o  P 0 . A . p  3 + 7 (Tr A)2 
p,2 PO 

+ 6 p  p02 +6p p02 - 4P 

3 2 6 4 
PO ij 

+ i C ~ i j ~ j i -  P . B.. .+ -x p B. . . -  -z p , , ~  ... 
Po2 ij Po2 ij 

01 JJl 'JJ 01 J'J 

3 1 (Ap . Po)TrA A p  . A .  Po Po. A .  A p  
+-ppAuap--TrAa+3 + 3  - 2  

2 2 p,2 PO2 Po2 
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N = 3 ( A p .  P ) ~ - ( A / L ) ~  (53)  

In the relations above p represents a unit vector along Po. 

Appendix. - By an n-factor product we mean a product of n factors, each of 
which is a scalar product of two vectors. 

We shall derive for an n-factor product its average value over an isotropic 
distribution of orientations. Consider a space-fixed righthanded coordinate system 
defined by the orthonormal vectors 5 ,  q ,  C. We have another rigid system of 
independent vectors u,v,w. The two systems have a common origin and the tripod 
u,v,w can take all possible orientations with respect to the space-fixed one. Only 
rotational invariants which are independent of the mutual orientation of the two 
systems will survive the averaging. 

since there is no invariant linear in 
orientation. 

and u and independent of their mutual 

i.e. proportional to an invariant which does not depend on the mutual orientation 
of c and u and which is quadratic in both 5 and u. 
We also have 

(( (5  . u>2>) = (( ( r  ’ Ul2)) 

= ( ( ( 5 .  Ul2>> 

= A ( u . u )  

1 
3 

A=>,’=--. since this should also hold for u = v 
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3) The invariant associated with three vectors C, q ,  5 is the volume of the parallel- 
epiped which they span. If in a 3-factor product one of the vectors occurs twice or 
more the average value will be zero. 

The value of 2 is determined by the reasoning which follows. An interchange 
of v and w will introduce a change of sign on the R.H.S. of (57). Hence 

1 
(((C . u)(rt . v)(C. w>>> = T {(((C . u>(v . v>(C. w))) - ((<t . u>(q . w)(C. v))), 

1 
In the last step the result ( 5 5 )  has been applied and the conclusion is 2 = - 

6 

4) A 4-factor product of the type (((c . u)(t . z)(q . v)(C. w))) has an average 
value zero, because non-vanishing would require an invariant linear in g and 
independent of its orientation with respect to the u,v,w system, which obviously 
does not exist. There are two cases delivering a non-vanishing average. 

a) Only one of the vectors C, q or[ occurs in the product. 

from u = v = w = z it follows: 

(( (5  . u)4)) = 3 i (u . u)2 (59) 

On the other hand we have: 

(u . u)2= {(t . u)2+ ( q  . u)2+ (C . u)2)2 

= 3 (( (c  . u)~)) + 6 i (U . u ) ~  (60) 

where the last step arises from the application of (80) to ( ( ( 5  . ~ ) ~ ( q  . u)~)). 

Substitution of (59) into (60) yields i = -. 1 
15 
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b) Two vectors from the set 5, q,(appear in the product. 

( ( ( C . u ) 2 ( q .  w ) 2 ) ) = A ( u - u ) ( w .  w ) + 2 p ( u . w ) 2  (62) 

Application of the previous result (58) to the first term of the R.H.S. of (63) yields 

12 6 
~ ( ( ( C . U ) ~ ( V .  W)’)>=E(U.U) (W.W)- - (U .  15 w ) ~  (64) 

2 1 
15 30 

Comparing (64) with (62) we see that A = - andp = - . 
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